GH-METHOD: METHODOLOGY OF MATH-PHYSICAL MEDICINE USING DIABETES RESEARCH AS AN EXAMPLE
2nd International Conference on DIABETES, ENDOCRINOLOGY, NUTRITION AND NURSING MANAGEMENT
June 24-25, 2019 | Philadelphia, USA
Gerald C Hsu
EclaireMD Foundation, USA
Keynote : J Diabetol
Abstract:
Introduction: This paper describes the math-physical medicine approach
(MPM) of medical research utilizing mathematics, physics, engineering
models and computer science, instead of the current biochemical
medicine approach (BCM) that mainly utilizes biology and chemistry.
Methodology of MPM: Initially, the author spent four years of self-studying
six chronic diseases and food nutrition to gain in-depth medical domain
knowledge. During 2014, he defined metabolism as a nonlinear,
dynamic and organic mathematical system having 10 categories with
~500 elements. Then he applied topology concept with partial differential
equation and nonlinear algebra to construct a metabolism equation.
Further he defined and calculated two variables, metabolism index and
general health status unit. During the past 8.5 years, he has collected
and processed 1.5 million data. Since 2015, he developed prediction
models, i.e. equations, for both postprandial plasma glucose (PPG) and
fasting plasma glucose (FPG). He identified 19 influential factors for PPG
and five factors for FPG. Each factor has a different contribution margin
to the glucose formation. He developed PPG model using optical physics
and signal processing. Furthermore, by using both wave and energy
theories, he extended his research into the risk probability of heart attack
or stroke. In this risk assessment, he applied structural mechanics
concepts, including elasticity, dynamic plastic and fracture mechanics to
simulate artery rupture and applied fluid dynamics concepts to simulate
artery blockage. He further decomposed 12,000 glucose waveforms with 21,000 data and then re-integrated them into three distinctive PPG waveform types which revealed different personality
traits and psychological behaviors of type 2 diabetes patients. For single time-stamped variables, he used traditional
time-series analysis. For interactions between two variables, he used spatial analysis. Furthermore, he also applied
Fourier Transform to conduct frequency domain analyses to discover some hidden characteristics of glucose waves. He
then developed an AI glucometer tool for patients to predict their weight, FPG, PPG and A1C. It uses various computer
science tools, including big data analytics, machine learning (self-learning, correction and simplification) and artificial
intelligence to achieve very high accuracy (95% to 99%).
Results: In 2010, his average glucose was 280 mg/dL and A1C was >10%. Now, his glucose value is 116 mg/dL and A1C
is 6.5%. Since his health condition is stable, he no longer suffers from repetitive cardiovascular episodes.
Conclusion: Instead of utilizing traditional biology, chemistry and statistics, the methodology of GH-Method:
math-physical medicine uses advanced mathematics, physics concept, engineering modeling and computer science
tools (big data analytics, artificial intelligence), which can be applied to other branches of medical research in order to
achieve a higher precision and deeper insight.
Biography:
Gerald C Hsu has completed his PhD in Mathematics and has been majored in Engineering at MIT. He has attended different universities over 17 years and studied seven academic disciplines. He has spent 20,000 hours in T2D research. First, he studied six metabolic diseases and food nutrition during 2010-2013, then conducted research during 2014-2018. His approach is math-physics and quantitative medicine based on mathematics, physics, engineering modeling, signal processing, computer science, big data analytics, statistics, machine learning and AI. His main focus is on preventive medicine using prediction tools. He believes that the better the prediction, the more control you have.
E-mail: g.hsu@eclairemd.com
PDF HTML