FROM ENERGY AND FOOD NUTRITION VIA METABOLISM TO DIABETES CONTROL AND RISK REDUCTION OF COMPLICATIONS
3rd International Conference on DIABETES, NUTRITION, METABOLISM & MEDICARE
July 25-26, 2019 | Amsterdam, Netherlands
Gerald C Hsu
EclaireMD Foundation, USA
Keynote : J Diabetol
Abstract:
Introduction: The author uses “Math-physics medicine” instead of the traditional
biochemical medicine to study the situation of energy imbalance
transmitting into metabolic disorders, resulting in chronic diseases and their
complications.
Methods: He applied energy theory to study the disequilibrium between
energy infusion, as in food nutrition intake and energy consumption such
as exercise, work and activities. These energy imbalances are caused by poor
lifestyle management and shown as metabolic disorders, involving weight,
glucose, blood pressure and lipids. In 2014, he developed a metabolism
equation using structural engineering modelling and various mathematics
techniques. During 2015 to 2017, he developed a postprandial glucose
(PPG) prediction model by applying optical physics and signal processing
techniques. During 2015 to 2016, he developed fasting plasma glucose (FPG)
prediction model by applying energy theory and spatial analysis techniques.
Finally, he used big data analytics, machine learning and artificial intelligence
to process and analyzes ~1.5 million data associated with four chronic diseases,
especially type 2 diabetes and its complications.
Results: The energy theory and spatial analysis identified >80% correlation
between FPG and weight (Physical representation of human body’s internal
energy exchange). Both FPG and PPG prediction models have achieved
99.9% linear accuracy. He also identified weight contributing 85% of FPG formation
and the combination of carbs/sugar intake and post-meal exercise
contributing 80% of PPG formation. Furthermore, by applying hemodynamics
with solid mechanics and fluid dynamic, he calculated his risk probability
of having a heart attack or stroke reducing from 74% to 26%.
Conclusion: The author has quantitatively proven that, as one of the major
energy infusion factors, excessive “Left-over” food nutrition combined with
inactive lifestyle can cause metabolic disorders which further induce chronic
diseases and their complications.
Biography:
Gerald C Hsu has completed his PhD in Mathematics and has been majored in Engineering at MIT. He has attended different universities over 17 years and studied seven academic disciplines. He has spent 20,000 hours in T2D research. First, he studied six metabolic diseases and food nutrition during 2010-2013, then conducted research during 2014-2018. His approach is math-physics and quantitative medicine based on mathematics, physics, engineering modelling; signal processing, computer science, big data analytics, statistics, machine learning and AI. His main focus is on preventive medicine using prediction tools. He believes that the better the prediction, the more control you have.
E-mail: g.hsu@eclairemd.com
PDF HTML