Archives of Industrial Biotechnology

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.
Reach Us +1 (629)348-3199

Short Article - Archives of Industrial Biotechnology (2020) Volume 4, Issue 2

BIO-MEDICAL WASTE MANAGEMENT

BineshSurgin D

 

White Memorial Hospital, India

Visit for more related articles at Archives of Industrial Biotechnology

Introduction

Biomedical waste is any kind of waste containing infectious materials. It may also include waste associated with the generation of biomedical waste that visually appears to be of medical or laboratory origin (e.g., packaging, unused bandages, infusion kits, etc.), as well research laboratory waste containing bio-molecules or organisms that are restricted from environmental release. As detailed below, discarded sharps are considered biomedical waste whether they are contaminated or not, due to the possibility of being contaminated with blood and their propensity to cause injury when not properly contained and disposed of. Biomedical waste is a type of biowaste.

Management:

Biomedical waste must be properly managed and disposed of to protect the environment, general public and workers, especially health care and sanitation workers who are at risk of exposure to biomedical waste as an occupational hazard. Steps in the management of biomedical waste include generation, accumulation, handling, storage, treatment, transport and disposal.

The development and implementation of a national waste management policy can improve biomedical waste management in health facilities in a country.

On-site versus Off-site:

Disposal occurs off-site, at a location that is different from the site of generation. Treatment may occur on-site or off-site. On-site treatment of large quantities of biomedical waste usually requires the use of relatively expensive equipment, and is generally only cost effective for very large hospitals and major universities who have the space, labour and budget to operate such equipment. Off-site treatment and disposal involves hiring of a biomedical waste disposal service (also called a truck service) whose employees are trained to collect and haul away biomedical waste in special containers (usually cardboard boxes, or reusable plastic bins) for treatment at a facility designed to handle biomedical waste.

Generation and Accumulation:

Biomedical waste should be collected in containers that are leak-proof and sufficiently strong to prevent breakage during handling. Containers of biomedical waste are marked witha biohazard symbol. The container, marking, and labels are often red. . Minimal recommended equipment include a fume hoodand primary and secondary waste containers to capture potential overflow. Even beneath the fume hood, containers containing chemical contaminants should remain closed when not in use. An open funnel placed in the mouth of a waste container has been shown to allow significant evaporation of chemicals into the surrounding atmosphere, which is then inhaled by laboratory personnel, and contributes a primary component to the threat of completing the fire triangle. To protect the health and safety of laboratory staff as well as neighboring civilians and the environment, proper waste management equipment, such as the Burkle funnel in Europe and the ECO Funnel in the U.S., should be utilized in any department which deals with chemical waste. It is to be dumped after treatment.

Storage:

Storage refers to keeping the waste until it is treated on-site or transported off-site for treatment or disposal. There are many options and containers for storage. Regulatory agencies may limitthe time for which waste can remain in storage. Handling is the act of moving biomedical waste between the point of generation, accumulation areas, storage locations and on-site treatment facilities. Workers who handle biomedical waste must observe standard precaution.

Treatment:

The goals of biomedical waste treatment are to reduce or eliminate the waste's hazards, and usually to make the waste unrecognizable. Treatment should render the waste safe for subsequent handling and disposal. There are several treatment methods that can accomplish these goals.

Biomedical waste is often incubated. An efficient incinerator will destroy pathogens and sharps. Source materials are not recognizable in the resulting ash.

The autoclave may also be used to treat biomedical waste. An autoclave uses steam and pressure to sterlize the waste or reduce its microbiological load to a level at which it may be safely disposed of. Many healthcare facilities routinely use an autoclave to sterilize medical supplies. If the same autoclave is used to sterilize supplies and treat biomedical waste,administrative control must be used to prevent the waste operations from contaminating the supplies.

Effective administrative controls include operator training, strict procedures, and separate times and space for processing biomedical waste.

Microwave disinfection can also be employed for treatment of Biomedical wastes. Microwave irradiation is a type of non-contact heating technologies for disinfection. Microwave chemistry is based on efficient heating of materials by microwave dielectric heating effects. When exposed to microwave frequencies, the dipoles of the water molecules present in cells re-align with the applied electric field. As the field oscillates, the dipoles attempts to realign itself with the alternating electric field and in this process, energy is lost in the form of heat through molecular friction and dielectric loss.

Microwave disinfection is a recently developed technology which provides advantage over old existing technologies of autoclaves as microwave based disinfection has less cycle time, power consumption and it requires minimal usage of water and consumables as compared to autoclaves.

For liquids and small quantities, a 1–10% solution of bleach can be used to disinfect biomedical waste. Solutions of sodium hydroxide and other chemical disinfectants may also be used, depending on the waste's characteristics. Other treatment methods include heat,alkaline and the use of microwaves.

For autoclaves and microwave systems, a shredder may be used as a final treatment step to render the waste unrecognizable.

Conclusion

Many studies took place in Gujarat, India regarding the knowledge of workers in facilities such as hospitals, nursing homes, or home health. It was found that 26% of doctors and 43% of paramedical staff were unaware of the risks related to biomedical wastes. After extensively looking at the different facilities, manywere undeveloped in the area regarding biomedical waste. The rules and regulations in India work with The Bio-medical Waste (Management and Handling) Rules from 1998, yet a large number of health care facilities were found to be sorting the wasteincorrectly.

Get the App