Journal of Diabetology

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.
Reach Us +1 (629)348-3199

Review Article - Journal of Diabetology (2023) Volume 7, Issue 5

A Comprehensive Review of Plant-Based Natural Compounds for Wound Healing

Monika Dagar, Surabhi Bajpai, Rakesh Mishra*

 

Corresponding Author:
Monika Dagar
Department of Bioscience and Biotechnology, Banasthali Vidyapith
Banasthali Vidyapith, Banasthali-304022, Rajasthan, India
E-mail:
surabhibiochem@gmail.com

Received: 25-Sept-2023, Manuscript No. AADY-23-112760; Editor assigned: 27-Sept-2023, PreQC No. AADY-23-112760(PQ); Reviewed: 11-Oct-2023, QC No. AADY-23-112760; Revised: 16-Oct-2023, Manuscript No. AADY-23-112760(R); Published: 23-Oct-2023, DOI:10.35841/aady-7.5.163

Citation: Bajpai S, Dagar M, Mishra R. A comprehensive review of plant-based natural compounds for wound healing. Dermatol Res Skin Care. 2023; 7(5):161

Visit for more related articles at Journal of Diabetology

Abstract

Restoration of the structure and function of damaged tissues, which is an intricate process, is governed by the discharge of multiple cytokines and growth factors at the site of injury. Various plants or substances derive from plants that have high antioxidant concentrations as well as antiinflammatory, immunomodulatory, and antibacterial activities may be very beneficial for the healing of wounds. This review paper aims to enhance our understanding of plant-derived compounds suitable for serving as bioactive elements in bandages or other products designed for wound care.

References

  1. Trinh XT, Long NV, Van Anh LT, et al. A comprehensive review of natural compounds for wound healing: Targeting bioactivity perspective. Int J Mol Sci. 2022;23(17):9573.
  2. Indexed at, Google Scholar, Cross Ref

  3. Thiruvoth FM, Mohapatra DP, Sivakumar D, et al. Current concepts in the physiology of adult wound healing. Plast Aesthet Res. 2015;2(5):250-6.
  4. Indexed at, Google Scholar, Cross Ref

  5. Ibrahim NI, Wong SK, Mohamed IN, et al. Wound healing properties of selected natural products. J Environ Public Health. 2018;15(11):2360.
  6. Indexed at, Google Scholar, Cross Ref

  7. Elshamy AI, Ammar NM, Hassan HA, et al. Topical wound healing activity of myricetin isolated from Tecomaria capensis v. aurea. Molecules. 2020;25(21):4870.
  8. Indexed at, Google Scholar, Cross Ref

  9. Imran M, Saeed F, Hussain G, et al. Myricetin: A comprehensive review on its biological potentials. Food Sci Nutr. 2021;9(10):5854-68.
  10. Indexed at, Google Scholar, Cross Ref

  11. Yoon JH, Kim MY, Cho JY. Apigenin: A Therapeutic Agent for Treatment of Skin Inflammatory Diseases and Cancer. Int J Mol Sci. 2023 Jan 12;24(2):1498.
  12. Indexed at, Google Scholar, Cross Ref

  13. Shankar E, Goel A, Gupta K, et al. Plant flavone apigenin: an emerging anticancer agent. Curr Pharmacol Rep. 2017;3:423-46.
  14. Indexed at, Google Scholar, Cross Ref

  15. Beserra FP, Vieira AJ, Gushiken LF, et al. Corrigendum to “Lupeol, a dietary triterpene, enhances wound healing in streptozotocin-induced hyperglycemic rats with modulatory effects on inflammation, oxidative stress, and angiogenesis”. Oxid Med Cell Longev. 2020;2020.
  16. Indexed at, Google Scholar, Cross Ref

  17. Man MQ, Yang B, Elias PM. Benefits of hesperidin for cutaneous functions. Evidence-Based Complementary and Alternative Medicine. 2019;2019.
  18. Indexed at, Google Scholar, Cross Ref

  19. Mi Y, Zhong L, Lu S, et al. Quercetin promotes cutaneous wound healing in mice through Wnt/β-catenin signaling pathway. J Ethnopharmacol. 2022;290:115066.
  20. Indexed at, Google Scholar, Cross Ref

  21. Gambini J, Inglés M, Olaso Get al. Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid Med Cell Longev. 2015;2015.
  22. Indexed at, Google Scholar, Cross Ref

  23. Koushki M, Amiri?Dashatan N, Ahmadi N, et al. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci Nutr. 2018;6(8):2473-90.
  24. Indexed at, Google Scholar, Cross Ref

  25. Pignet AL, Schellnegger M, Hecker A, et al. Resveratrol-induced signal transduction in wound healing. Int J Mol Sci. 2021;22(23):12614.
  26. Indexed at, Google Scholar, Cross Ref

  27. Kumari A, Raina N, Wahi A, et al. Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review. Pharmaceutics. 2022;14(11):2288.
  28. Indexed at, Google Scholar, Cross Ref

  29. Prasad S, Aggarwal BB. Turmeric, the golden spice. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. 2011.
  30. Google Scholar

  31. Salehi B, Fokou PV, Sharifi-Rad M, et al. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals. 2019;12(1):11.
  32. Indexed at, Google Scholar, Cross Ref

  33. Sun R, Liu C, Liu J, et al. Integrated network pharmacology and experimental validation to explore the mechanisms underlying naringenin treatment of chronic wounds. Scientific Reports. 2023;13(1):132.
  34. Indexed at, Google Scholar, Cross Ref

  35. Diniz LR, Calado LL, Duarte AB, et al. Centella asiatica and Its Metabolite Asiatic Acid: Wound Healing Effects and Therapeutic Potential. Metabolites. 2023;13(2):276.
  36. Indexed at, Google Scholar, Cross Ref

  37. Morissette M, Litim N, Di Paolo T. Natural phytoestrogens: A class of promising neuroprotective agents for Parkinson disease. InDiscovery and Development of Neuroprotective Agents from Natural Products 2018 (pp. 9-61). Elsevier.
  38. Indexed at, Google Scholar, Cross Ref

  39. Lan X, Wang W, Li Q, et al. The natural flavonoid pinocembrin: molecular targets and potential therapeutic applications. Mol Neurobiol. 2016;53:1794-801.
  40. Indexed at, Google Scholar, Cross Ref

  41. Anstead GM. Steroids, retinoids, and wound healing. Int J Low Extrem Wounds. 1998;11(6):277-85.
  42. Indexed at, Google Scholar

  43. Hsieh PF, Yu CC, Chu PM, et al. Verbascoside protects gingival cells against high glucose-induced oxidative stress via PKC/HMGB1/RAGE/NFκB pathway. Antioxidants. 2021;10(9):1445.
  44. Indexed at, Google Scholar, Cross Ref

  45. Luangpraditkun K, Charoensit P, Grandmottet F, et al. Photoprotective potential of the natural artocarpin against in vitro UVB-induced apoptosis. Oxidative medicine and cellular longevity. 2020;2020.
  46. Indexed at, Google Scholar, Cross Ref

  47. Yeh CJ, Chen CC, Leu YL, et al. The effects of artocarpin on wound healing: in vitro and in vivo studies. Scientific reports. 2017;7(1):15599.
  48. Indexed at, Google Scholar, Cross Ref

  49. Bernatoniene J, Kopustinskiene DM. The role of catechins in cellular responses to oxidative stress. Molecules. 2018;23(4):965.
  50. Indexed at, Google Scholar, Cross Ref

  51. Chaniad P, Tewtrakul S, Sudsai T, et al. Anti-inflammatory, wound healing and antioxidant potential of compounds from Dioscorea bulbifera L. bulbils. PloS one. 2020;15(12):e0243632.
  52. Indexed at, Google Scholar, Cross Ref

  53. Chen LY, Cheng HL, Kuan YH, et al. Therapeutic potential of luteolin on impaired wound healing in streptozotocin-induced rats. Biomedicines. 2021;9(7):761.
  54. Indexed at, Google Scholar, Cross Ref

  55. Taheri Y, Sharifi-Rad J, Antika G, Yet al. Paving luteolin therapeutic potentialities and agro-food-pharma applications: emphasis on in vivo pharmacological effects and bioavailability traits. Oxid Med Cell Longev. 2021;2021.
  56. Indexed at, Google Scholar, Cross Ref

  57. Govea-Salas M, Rivas-Estilla AM, Ascacio-Valdés J, et al. Gallic Acid as a putative antioxidant in usage against liver disease. InThe Liver 2018 (pp. 317-322). Academic Press.
  58. Indexed at, Google Scholar, Cross Ref

  59. Goldberg I, Rokem JS. Organic and fatty acid production, microbial. Encyclopedia of microbiology. 2009:421-42.
  60. Indexed at, Google Scholar, Cross Ref

  61. Karatas, O., & Gevrek, F. (2019). Gallic acid liposome and powder gels improved wound healing in wistar rats.
  62. Google Scholar, Cross Ref

  63. Zdu?ska K, Dana A, Kolodziejczak A, et al. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol. 2018;31(6):332-6.
  64. Indexed at, Google Scholar, Cross Ref

  65. Kumar N, Pruthi V. Potential applications of ferulic acid from natural sources. Biotechnology Reports. 2014;4:86-93.
  66. Indexed at, Google Scholar, Cross Ref

  67. Kavitha VU, Kandasubramanian B. Tannins for wastewater treatment. SN Applied Sciences. 2020;2:1-21.
  68. Indexed at, Google Scholar, Cross Ref

  69. Orlowski P, Zmigrodzka M, Tomaszewska E, et al. Tannic acid-modified silver nanoparticles for wound healing: the importance of size. Int J Nanomed. 2018:991-1007.
  70. Indexed at, Google Scholar, Cross Ref

  71. Sidhu GS, Singh AK, Banaudha KK, et al. Arnebin-1 accelerates normal and hydrocortisone-induced impaired wound healing. J Invest Dermatol. 1999;113(5):773-81.
  72. Indexed at, Google Scholar, Cross Ref

  73. Thangapazham RL, Sharad S, Maheshwari RK. Phytochemicals in wound healing. Adv. Wound Care. 2016;5(5):230-41.
  74. Indexed at, Google Scholar, Cross Ref

  75. Zeng Z, Huang WD, Gao Q, et al. Arnebin-1 promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway. Int J Mol. Med. 2015;36(3):685-97.
  76. Indexed at, Google Scholar, Cross Ref

  77. Guilliams TG. Allergies: the natural approach. The Standard. 1998;1(2):1-8.
  78. Indexed at, Google Scholar, Cross Ref

  79. Lozza L, Moura-Alves P, Domaszewska T, et al. The Henna pigment Lawsone activates the Aryl Hydrocarbon Receptor and impacts skin homeostasis. Scientific reports . 2019;9(1):10878.
  80. Indexed at, Google Scholar, Cross Ref

    1. Luo Y, Song L, Wang X, et al. Uncovering the mechanisms of cryptotanshinone as a therapeutic agent against hepatocellular carcinoma. Front pharmacol. 2020;11:1264.
    2. Indexed at, Google Scholar, Cross Ref

    3. Wu YH, Wu YR, Li B, et al. Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia. 2020;145:104633.
    4. Indexed at, Google Scholar, Cross Ref

    5. Dubey N, Mishra V, Thakur D. Plant-based antimicrobial formulations. InPostharvest Disinfection of Fruits and Vegetables 2018 (pp. 211-230). Academic Press.
    6. Indexed at, Google Scholar, Cross Ref

    7. Somboonwong J, Kankaisre M, Tantisira B, et al. Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: an experimental animal study. BMC complementary and alternative medicine. 2012;12(1):1-7.
    8. Indexed at, Google Scholar, Cross Ref

    9. Vijayaraghavan K, Rajkumar J, Bukhari SN, et al. Chromolaena odorata: A neglected weed with a wide spectrum of pharmacological activities. Mol Med Rep. 2017;15(3):1007-16.
    10. Indexed at, Google Scholar, Cross Ref

Get the App