Review Article - Journal of Diabetology (2023) Volume 7, Issue 5
A Comprehensive Review of Plant-Based Natural Compounds for Wound Healing
Monika Dagar, Surabhi Bajpai, Rakesh Mishra*
- Corresponding Author:
- Monika Dagar
Department of Bioscience and Biotechnology, Banasthali Vidyapith
Banasthali Vidyapith, Banasthali-304022, Rajasthan, India
E-mail: surabhibiochem@gmail.com
Received: 25-Sept-2023, Manuscript No. AADY-23-112760; Editor assigned: 27-Sept-2023, PreQC No. AADY-23-112760(PQ); Reviewed: 11-Oct-2023, QC No. AADY-23-112760; Revised: 16-Oct-2023, Manuscript No. AADY-23-112760(R); Published: 23-Oct-2023, DOI:10.35841/aady-7.5.163
Citation: Bajpai S, Dagar M, Mishra R. A comprehensive review of plant-based natural compounds for wound healing. Dermatol Res Skin Care. 2023; 7(5):161
Abstract
Restoration of the structure and function of damaged tissues, which is an intricate process, is governed by the discharge of multiple cytokines and growth factors at the site of injury. Various plants or substances derive from plants that have high antioxidant concentrations as well as antiinflammatory, immunomodulatory, and antibacterial activities may be very beneficial for the healing of wounds. This review paper aims to enhance our understanding of plant-derived compounds suitable for serving as bioactive elements in bandages or other products designed for wound care.
References
- Trinh XT, Long NV, Van Anh LT, et al. A comprehensive review of natural compounds for wound healing: Targeting bioactivity perspective. Int J Mol Sci. 2022;23(17):9573.
- Thiruvoth FM, Mohapatra DP, Sivakumar D, et al. Current concepts in the physiology of adult wound healing. Plast Aesthet Res. 2015;2(5):250-6.
- Ibrahim NI, Wong SK, Mohamed IN, et al. Wound healing properties of selected natural products. J Environ Public Health. 2018;15(11):2360.
- Elshamy AI, Ammar NM, Hassan HA, et al. Topical wound healing activity of myricetin isolated from Tecomaria capensis v. aurea. Molecules. 2020;25(21):4870.
- Imran M, Saeed F, Hussain G, et al. Myricetin: A comprehensive review on its biological potentials. Food Sci Nutr. 2021;9(10):5854-68.
- Yoon JH, Kim MY, Cho JY. Apigenin: A Therapeutic Agent for Treatment of Skin Inflammatory Diseases and Cancer. Int J Mol Sci. 2023 Jan 12;24(2):1498.
- Shankar E, Goel A, Gupta K, et al. Plant flavone apigenin: an emerging anticancer agent. Curr Pharmacol Rep. 2017;3:423-46.
- Beserra FP, Vieira AJ, Gushiken LF, et al. Corrigendum to “Lupeol, a dietary triterpene, enhances wound healing in streptozotocin-induced hyperglycemic rats with modulatory effects on inflammation, oxidative stress, and angiogenesis”. Oxid Med Cell Longev. 2020;2020.
- Man MQ, Yang B, Elias PM. Benefits of hesperidin for cutaneous functions. Evidence-Based Complementary and Alternative Medicine. 2019;2019.
- Mi Y, Zhong L, Lu S, et al. Quercetin promotes cutaneous wound healing in mice through Wnt/β-catenin signaling pathway. J Ethnopharmacol. 2022;290:115066.
- Gambini J, Inglés M, Olaso Get al. Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid Med Cell Longev. 2015;2015.
- Koushki M, Amiri?Dashatan N, Ahmadi N, et al. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci Nutr. 2018;6(8):2473-90.
- Pignet AL, Schellnegger M, Hecker A, et al. Resveratrol-induced signal transduction in wound healing. Int J Mol Sci. 2021;22(23):12614.
- Kumari A, Raina N, Wahi A, et al. Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review. Pharmaceutics. 2022;14(11):2288.
- Prasad S, Aggarwal BB. Turmeric, the golden spice. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. 2011.
- Salehi B, Fokou PV, Sharifi-Rad M, et al. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals. 2019;12(1):11.
- Sun R, Liu C, Liu J, et al. Integrated network pharmacology and experimental validation to explore the mechanisms underlying naringenin treatment of chronic wounds. Scientific Reports. 2023;13(1):132.
- Diniz LR, Calado LL, Duarte AB, et al. Centella asiatica and Its Metabolite Asiatic Acid: Wound Healing Effects and Therapeutic Potential. Metabolites. 2023;13(2):276.
- Morissette M, Litim N, Di Paolo T. Natural phytoestrogens: A class of promising neuroprotective agents for Parkinson disease. InDiscovery and Development of Neuroprotective Agents from Natural Products 2018 (pp. 9-61). Elsevier.
- Lan X, Wang W, Li Q, et al. The natural flavonoid pinocembrin: molecular targets and potential therapeutic applications. Mol Neurobiol. 2016;53:1794-801.
- Anstead GM. Steroids, retinoids, and wound healing. Int J Low Extrem Wounds. 1998;11(6):277-85.
- Hsieh PF, Yu CC, Chu PM, et al. Verbascoside protects gingival cells against high glucose-induced oxidative stress via PKC/HMGB1/RAGE/NFκB pathway. Antioxidants. 2021;10(9):1445.
- Luangpraditkun K, Charoensit P, Grandmottet F, et al. Photoprotective potential of the natural artocarpin against in vitro UVB-induced apoptosis. Oxidative medicine and cellular longevity. 2020;2020.
- Yeh CJ, Chen CC, Leu YL, et al. The effects of artocarpin on wound healing: in vitro and in vivo studies. Scientific reports. 2017;7(1):15599.
- Bernatoniene J, Kopustinskiene DM. The role of catechins in cellular responses to oxidative stress. Molecules. 2018;23(4):965.
- Chaniad P, Tewtrakul S, Sudsai T, et al. Anti-inflammatory, wound healing and antioxidant potential of compounds from Dioscorea bulbifera L. bulbils. PloS one. 2020;15(12):e0243632.
- Chen LY, Cheng HL, Kuan YH, et al. Therapeutic potential of luteolin on impaired wound healing in streptozotocin-induced rats. Biomedicines. 2021;9(7):761.
- Taheri Y, Sharifi-Rad J, Antika G, Yet al. Paving luteolin therapeutic potentialities and agro-food-pharma applications: emphasis on in vivo pharmacological effects and bioavailability traits. Oxid Med Cell Longev. 2021;2021.
- Govea-Salas M, Rivas-Estilla AM, Ascacio-Valdés J, et al. Gallic Acid as a putative antioxidant in usage against liver disease. InThe Liver 2018 (pp. 317-322). Academic Press.
- Goldberg I, Rokem JS. Organic and fatty acid production, microbial. Encyclopedia of microbiology. 2009:421-42.
- Karatas, O., & Gevrek, F. (2019). Gallic acid liposome and powder gels improved wound healing in wistar rats.
- Zdu?ska K, Dana A, Kolodziejczak A, et al. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol. 2018;31(6):332-6.
- Kumar N, Pruthi V. Potential applications of ferulic acid from natural sources. Biotechnology Reports. 2014;4:86-93.
- Kavitha VU, Kandasubramanian B. Tannins for wastewater treatment. SN Applied Sciences. 2020;2:1-21.
- Orlowski P, Zmigrodzka M, Tomaszewska E, et al. Tannic acid-modified silver nanoparticles for wound healing: the importance of size. Int J Nanomed. 2018:991-1007.
- Sidhu GS, Singh AK, Banaudha KK, et al. Arnebin-1 accelerates normal and hydrocortisone-induced impaired wound healing. J Invest Dermatol. 1999;113(5):773-81.
- Thangapazham RL, Sharad S, Maheshwari RK. Phytochemicals in wound healing. Adv. Wound Care. 2016;5(5):230-41.
- Zeng Z, Huang WD, Gao Q, et al. Arnebin-1 promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway. Int J Mol. Med. 2015;36(3):685-97.
- Guilliams TG. Allergies: the natural approach. The Standard. 1998;1(2):1-8.
- Lozza L, Moura-Alves P, Domaszewska T, et al. The Henna pigment Lawsone activates the Aryl Hydrocarbon Receptor and impacts skin homeostasis. Scientific reports . 2019;9(1):10878.
- Luo Y, Song L, Wang X, et al. Uncovering the mechanisms of cryptotanshinone as a therapeutic agent against hepatocellular carcinoma. Front pharmacol. 2020;11:1264.
- Wu YH, Wu YR, Li B, et al. Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia. 2020;145:104633.
- Dubey N, Mishra V, Thakur D. Plant-based antimicrobial formulations. InPostharvest Disinfection of Fruits and Vegetables 2018 (pp. 211-230). Academic Press.
- Somboonwong J, Kankaisre M, Tantisira B, et al. Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: an experimental animal study. BMC complementary and alternative medicine. 2012;12(1):1-7.
- Vijayaraghavan K, Rajkumar J, Bukhari SN, et al. Chromolaena odorata: A neglected weed with a wide spectrum of pharmacological activities. Mol Med Rep. 2017;15(3):1007-16.
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref
Indexed at, Google Scholar, Cross Ref