RNAI-23-110908

Study on the mechanism of salt-processed alismatis rhizoma (*Alisma plantago- aquatica subsp. orientale* (sam.) sam.) based on UPLC-Q-TOF-MS, pattern analysis, and transcriptome.

Lin Yan, Zemin Ou, Yi Chen, Yan Tong, Dewen Liu^{*}, Jinyu Wang

Department of Medical Science, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China *Received:* 26-Aug-2023, Manuscript No. RNAI-23-110908; *Editor assigned:* 28-Aug-2023, RNAI-23-110908 (PQ); *Reviewed:* 11-Sept-2023, QC No. RNAI-23-110908; *Revised:* 20-Jan-2025, Manuscript No. RNAI-23-110908 (R); *Published:* 27-Jan-2025, DOI: 10.35841/2591-7781.19.1000218

Supplementary data

Table S1. Retention times and MS/MS data of compounds identified in AR, SAR by UPLC-Q-TOF-MS

(NO. $t_{\rm R}/{\rm min}$	$([M+H]^{/}[M]$ Na] ⁺ /[M+NH 4] ⁺) theoretical	([M+H] ⁺ /[M +Na] ⁺ /[M+NH ₄] ⁺) experimental	δ/ppm	Pattern	Formula	MS/MS	Compound	Change index
----------------------------	---	---	-------	---------	---------	-------	----------	-----------------

1	7.21	221.190 5	221.190 1	-1.8	$[M+H]^+$	C ₁₅ H ₂₄ O	221.188 6, 203.180 1, 161.133 6, 147.116 2,	alismoxide	0.990
2	8.01	235.169 8	235.169 7	-0.4	$[M+H]^+$	$C_{15}H_{22}O_2$	133.099 5, 105.069 9 157.1009		
3	8.72	503.337 3	503.336 5	-1.6	$[M+H]^+$	$C_{30}H_{46}O_{6}$	525.318 8, 485.328 1, 467.306 2, 431.281 4, 413.272 8, 395.254 3	alismanol O	
4	9.31	535.327 1	535.324 6	-4.7	$[M+H]^+$	$C_{30}H_{46}O_8$	499.305 2, 445.259 5, 429.263 7, 411.252 8, 385.093 6		
5	10.06	503.337 3	503.339 3	4	$[M+H]^+$	$C_{30}H_{46}O_{6}$	525.315 9, 503.327 9, 4 467.318 0 , 449.296 4,	85.328 1, 431.282 8,	
6	10.07	221.190 5	221.191 1	2.7	$[M+H]^+$	C ₁₅ H ₂₄ O	413.269 4, 395.259 2 203.179 8, 161.132 5, 147.119 1, 133.102 5	Alismoxide isomer	0.832
7	11.10	505.352 9	505.352 8	-0.2	$[M+H]^+$	$C_{30}H_{48}O_6$	527.334 7, 505.353 1, 487.342 2, 469.330 7, 451.320 2, 415.284 5, 207.274 1	16-oxo alisol A	0.710
8	11.57	431.279 7	431.279 6	-0.2	$[M+H]^+$	$C_{26}H_{38}O_5$	453.261 7, 431.280 7, 413.269 6, 395.261 3, 149.023 3		0.757
9	12.09	529.3529	529.3544	2.8	$\left[\mathrm{M}\mathrm{+}\mathrm{H} ight]^{\mathrm{+}}$	$C_{32}H_{48}O_{6}$	529.349 5, 511.334 8, 469.342 1, 451.322 4, 397.273 1	alismaketon e C 23- acetate isomer	1.021
10	13.12	517.316 5	517.316 5	0	$[M+H]^+$	$C_{30}H_{44}O_7$	517.315 7, 499.303 6, 467.311 6, 445.259 0	15011101	0.769
11	14.40	487.342 3	487.341 5	-1.6	$[M+H]^+$	$C_{30}H_{46}O_5$	487.338 9, 469.330 5,	alisol C	0.913

12	14.82	219.174 9	219.174 4	-2.3	$[M+H]^+$	C ₁₅ H ₂₂ O	451.322 2, 433.310 6, 415.284 8 219.172 8, 201.164 3	isomer	
13	15.39	487.342 3	487.342 3	0	$[M+H]^+$	$C_{30}H_{46}O_5$	469.333 1, 451.321 2, 379.276 7, 337.251 6	dihydroxy- 24-diacetyl alisol O	0.814
14	15.99	487.342 3	487.342 9	1.2	$[M+H]^+$	$C_{30}H_{46}O_5$	509.325 4, 487.343 5, 469.332 9, 451.322 1, 433.312 3, 415.285 6, 397.274 7	alisol C	0.878
15	16.41	471.347 4	471.347 6	0.4	$[M+H]^+$	$C_{30}H_{46}O_4$	471.344 7, 453.342 5, 381.276 6, 339.266 2	16,23- oxido-alisol B	0.588
16	16.69	529.350 5	529.350 3	-0.4	[M+Na] ⁺	$C_{30}H_{50}O_{6}$	529.349 2, 507.310 6, 471.340 3, 453.335 4	13,17- epoxy-alisol A	0.955
17	17.17	561.327 0	561.343 0	0.5	$[M+H]^+$	$C_{32}H_{48}O_8$	543.349 4		
18	18.12	487.342 3	487.339 4	-6	$[M+H]^+$	$C_{30}H_{46}O_5$	469.330 7, 451.322 9, 397.276 0, 353.248 3	dihydroxy- 24-diacetyl alisol O isomer	0.814
19	18.42	489.358 0	489.357 9	-0.2	$[M+H]^+$	$C_{30}H_{48}O_5$	489.357 1, 471.344 9, 453.335 6, 399.290 6, 381.277 6	13,17- epoxy-alisol B	0.643
20	18.96	415.284 8	415.286 0	2.9	$[M+H]^+$	$C_{26}H_{38}O_4$	397.274 9, 379.262 3, 361.252 5, 337.249 1, 301.142 0		0.755
21	19.53	559.327 1	559.327 1	0	$[M+H]^+$	$C_{32}H_{46}O_8$	581.312 3, 559.328 2, 499.306 6, 481.297 5, 445.258 5		1.216

22	20.22	553.350 5	553.350 6	0.2	[M+Na] ⁺	$C_{32}H_{50}O_{6}$	553.349 8, 531.364 2, 513.359 0, 495.347 1, 435.325 9, 417.315 3, 381 279 3	23-acetate alisol N	1.839
23	21.76	369.243 0	369.242 9	-0.3	$[M+H]^+$	$C_{24}H_{32}O_3$	391.226 4, 369.243 4, 351.267 1, 301.141 9		1.135
24	22.31	547.363 5	547.363 7	0.4	$[M+H]^+$	$C_{32}H_{50}O_7$	509.545 1, 551.555 1, 529.357 5, 511.340 4, 451.319 9, 435.327 0, 381.279 1	16-oxo- alisol A-23- acetate	1.404
25	22.69	529.352 9	529.353 3	0.8	$\left[\mathrm{M}\mathrm{+}\mathrm{H} ight]^{+}$	$C_{32}H_{48}O_6$	551.335 8, 529.354 1, 511.342 9, 469.332 5, 451.322 0, 433.311 0, 415.285 9	23-acetate alisol C	1.275
26	23.87	471.347 4	471.347 1	-0.6	$\left[\mathrm{M}\mathrm{+}\mathrm{H} ight]^{\mathrm{+}}$	$C_{30}H_{46}O_4$	493.329 1, 471.347 1, 453.336 3, 399.289 3, 381.277 7	11-deoxy- alisol C isomer	2.300
27	24.16	547.363 5	547.364 3	1.5	$[M+H]^+$	$C_{32}H_{50}O_{7}$	511.341 1, 451.321 6, 397.274 4	hydroperox y alisol B 23-acetate	0.370
28	24.72	513.358 0	513.359 3	2.5	$[M+H]^+$	$C_{32}H_{48}O_5$	513.366 6, 495.357 1, 471.352 5, 453.336 9, 435.327 9, 399.303 7, 381.277 9	11-deoxy- alisol C 23- acetate isomer	0.635
29	25.89	471.347 4	471.346 8	-1.3	$[M+H]^+$	$C_{30}H_{46}O_4$	493.330 5, 453.338 2, 399.291 1, 381.280 1	11-deoxy- alisol C isomer	1.675
30	26.17	513.355 6	513.357 2	3.1	[M+Na] ⁺	$C_{30}H_{50}O_5$	513.355 0, 453.335 6, 435.325 1, 383.294 6,	alisol A	3.929

							365.284 5, 339.268 9		
							515.372 0, 497.370 5,	23-acetate	
31	26.78	515.373 6	515.372 8	-1.6	$[M+H]^+$	$C_{32}H_{50}O_5$	437.343 9, 419.331 9,	alisol B	1.188
							339.269 1	isomer	
							551.331 5, 529.348 7,	alismaketon	
32	27.11	529.352 9	529.352 5	-0.8	$[M+H]^+$	$C_{32}H_{48}O_6$	511.337 4, 469.333 8,	e C 23-	0.649
							451.322 2, 397.274 1	acetate	
							525.319 2, 503.337 7,	20-	
33	27.72	503.337 3	503.337 6	0.6	$[M+H]^+$	$C_{30}H_{46}O_{6}$	485.327 1, 467.315 9,	hydroxyanis	1.146
							431.280 1, 413.269 3	ole C	
							551 332 5 529 353 4	alismaketon	
34	28 11	529 352 9	529 353 2	0.6	$[M+H]^+$	$C_{22}H_{40}O_{6}$	511 342 0 469 340 9	e C 23-	1 052
51	20.11	527.5527	527.555 2	0.0		032114800	451 319 9 397 273 9	acetate	1.052
							1011.017 7, 077.270 7	isomer	
							545 345 6 527 335 9	12-	
							509.327 7. 485.321 4.	Hydroxy-	~ - / -
35	28.53	545.347 8	545.347 0	-1.5	[M+H]	$C_{32}H_{48}O_7$	467.313 4, 449.299 8,	16-oxo-	0.743
							413.269 1	alisol A-24-	
								actetate	
							553.350 2, 513.355 0,		
36	28.72	531.368 6	531.368 3	-0.6	$[M+H]^+$	$C_{32}H_{50}O_{6}$	495.346 1, 453.333 2,	24-acetate	1.105
					[]	- 3230 - 0	435.326 1, 399.291 1,	alisol F	
							381.279 8		
~-	••••					a o	511.342 5, 493.334 6,	Alisol L-23-	0.040
37	28.89	511.342 3	511.341 6	-1.4	[M+H]'	$C_{32}H_{46}O_5$	451.321 8, 433.312 8,	actetate	0.949
							381.281 3		
							555.361 3, 533.325 3,		
38	28.91	555.366 2	555.365 2	-1.8	[M+Na	$C_{32}H_{52}O_{6}$	515.369 6, 497.360 7,	24-acetate	1.199
	50 20.71	222.2001 222.2001]'	52 52 - 0	439.341 9, 383.294 1,	alısol A		
							365.282.8		

39	29.16	473.363 1	473.362 5	-1.3	$[M+H]^+$	$C_{30}H_{48}O_4$	495.344 6, 383.295 6, 365.283 6, 339.267 3	alisol G isomer	1.106
40	29.52	513.358 0	513.357 8	-0.4	$[M+H]^+$	$C_{32}H_{48}O_5$	535.340 3, 513.357 7, 453.336 6, 435.326 1,	11-deoxy- alisol C 23-	1.183
							399.288 6 527.337 5, 509.324 8,	acetate	
41	29.88	527.337 3	527.337 0	-0.6	$[M+H]^+$	$C_{32}H_{46}O_{6}$	497.363 1, 467.316 0, 453.336 4, 437.340 2		0.686
42	30.19	545.347 8	545.347 9	0.2	$[M+H]^+$	$C_{32}H_{48}O_7$	567.329 4, 545.348 4, 485.327 3, 467.317 1, 431.282 7, 413.368 3	23-acetate alisol M	1.638
43	30.45	471.347 4	471.346 6	-1.7	$[M+H]^+$	$C_{30}H_{46}O_4$	493.328 5, 471.345 7, 453.337 9, 435.326 8, 399.289 3, 381.278 4	24-deacetyl alisol O	1.038
44	30.71	497.363 1	497.362 6	-1	$[M+H]^+$	$C_{32}H_{48}O_4$			0.765
45	30.86	531.368 6	531.368 1	-0.9	$[M+H]^+$	$C_{32}H_{50}O_{6}$	531.369 3, 513.356 3, 495.346 7, 453.336 5, 435.326 0, 399.288 7, 381.280 8	24-acetate alisol F isomer	0.733
46	31.23	473.363 1	473.363 1	0	$[M+H]^+$	$C_{30}H_{48}O_4$	473.362 4, 455.352 1, 437.341 2, 383.294 3, 365.284 3, 339.268 3	alisol B	1.409
47	31.63	473.363 1	473.363 3	0.4	$\left[\mathrm{M}{+}\mathrm{H} ight]^{+}$	$C_{30}H_{48}O_4$	473.368 0, 455.358 0, 437.341 9, 383.294 3, 365.283 1, 339.268 2	alisol B isomer	
48	32.24	529.352 9	529.355 3	4.5	$[M+H]^+$	$C_{32}H_{48}O_6$	529.348 6, 511.340 5, 451.319 2, 397.271 7, 379.269 3	16-oxo-11- anhydroalis ol A 24- acetate	1.119
49	32.51	513.358 0	513.357 8	-0.4	$[M+H]^+$	$C_{32}H_{48}O_5$	513.357 7, 495.346 8,	alisol O	1.600

							453.340 9, 435.325 0,		
							513.357 7, 495.344 5,	-1:10	
50	32.86	513.358 0	513.358 3	0.6	$[M+H]^+$	$C_{32}H_{48}O_5$	453.335 2, 435.325 1,		
							381.278 2	isomer	
							537.354 7, 515.367 0,	22	
51	22 72	515 272 C	515 272 1	1			497.363 5, 479.352 8,	23-acelate	0 6 4 9
51	51 55.75	515.5750	515.5751	-1	[M+H]	$C_{32}H_{50}O_5$	437.341 5, 419.331 4,	alisol B	0.048
							383.293 0, 339.267 0	isomer	
							537.355 8, 515.374 3,	22	
52	34.13	515.373 6	515.373 9	0.6	$[M+H]^+$	$C_{32}H_{50}O_5$	497.362 8, 479.352 6,	23-acelate	0.865
							437.342 4, 419.331 6	alisol B	
							513.360 0, 495.351 6,	alical	
53	34.93	513.358 0	513.357 6	-0.8	$[M+H]^+$	$C_{32}H_{48}O_5$	453.333 0, 435.323 4,	alisof O	
							399.240 1, 381.271 4	Isomer	
							497.361 8, 453.335 8, 43	37.342 2,	
54	35.52	497.363 1	497.363 8	1.4	$[M+H]^+$	$C_{32}H_{48}O_4$	419.331 9, 381.279 8, 30	52.283 8,	0.793
							339.270 1, 301.142 4		
							455.354 9, 437.342 0,		
55	35.81	455.352 5	455.351 9	-1.3	$[M+H]^+$	$C_{30}H_{46}O_3$	419.327 6, 383.294 0,	alisol I	0.845
							365.283 5, 341.284 0		
56	36.28	108 301 7	108 301 5	-0.4	[M+NH	CarHunOa			0 030
50	50.20	470.3747	470.374 3	-0.4	$4]^{+}$	C321148O3			0.757
							513.359 7, 495.340 7,	alisol O	
57	36.97	513.358 0	513.360 1	4.1	$[M+H]^+$	$C_{32}H_{48}O_5$	453.337 3, 435.328 8,	isomer	0.556
							381.278 4, 363.268 8	13011101	
58	37 35	513 358 0	513 357 4	-12	$[M+H]^+$	$C_{22}H_{40}O_{5}$	495.346 9, 453.335 9,	alisol O	
50	51.55	515.5500	515.557 4	1.2		032114805	435.328 4, 381.277 1	isomer	
59	37 90	471 347 4	471 348 3	19	$[M+H]^+$	$C_{20}H_{4\epsilon}O_{4}$	453.334 3, 435.323 3,	11-deoxy-	
	51.70		171.510.5	1.7		~30 - 1 40 · 4	399.236 5, 381.237 2	alisol C	
60	38.07	497.363 1	497.362 1	-2	$[M+H]^+$	$C_{32}H_{48}O_4$	437.342 1, 419.328 6,		0.653

							399.241 6, 381.277 3, 313.272 3		
61	38.81	497.363 1	497.362 9	-0.4	$[M+H]^+$	$C_{32}H_{48}O_4$	497.364 8, 453.334 0, 435.332 5, 399.282 0, 381.279 4, 339.274 6,		0.843
62	39.81	499.378 7	499.378 9	0.4	$[M+H]^+$	$C_{32}H_{50}O_4$	313.272 9 521.360 5, 499.378 7, 481.368 2, 439.357 5,	11-deoxy- alisol B 23-	0.856
63	40.15	499.378 7	499.378 6	-0.2	$[M+H]^+$	$C_{32}H_{50}O_4$	421.346 7 521.359 2, 499.370 5, 481.343 2, 439.355 8, 421.355 0	acetate 11-deoxy- alisol B 23- acetate isomer	0.750

(Note: The change index > 1 indicates that the peak area increases after salting, and < 1 indicates that the peak area decreases after salting)

Figure S2. The fragmentation process of 23-acetate alisol C in positive ion mode

Type 3: 23-acetate alisol B

Figure S3. The fragmentation process of alisol B 23-acetate in positive ion mode

Type 4: Alismoxide

Figure S4. The fragmentation process of alismoxide in positive ion mode

Figure S5. The fragmentation process of alismaketone C 23-acetate in positive ion mode

Figure S6. The fragmentation process of 13,17-epoxy-alisol A in positive ion mode

Table S2. Gene entries and gene names shared by biological processes in GO enrichment analysis of AR and SAR

Gene entry	Gene name
cell activation	ADORA2A, AIF1, BST2, C1QA, CD2, CD4, CD6, CD8A,

	LODD ITCAA ITCAL LOV LODI LODO LEDD LEDG
	IL2RB, ITGA4, ITGAL, LCK, LCP1, LCP2, LEPR, LFNG,
	CD180, LYL1, PLEK, PRF1, PTPRC, CCL5, SELPLG,
	SLC11A1, SPN, TLR2, VCAM1, TSPAN32, IKZF1, IKZF3,
	KLRK1, LAT, RGCC, SASH3, APBB1IP, CLEC7A,
	FERMT3, THEMIS
positive regulation	C1QA, C1QB, C1QC, C1R, C1S, C3, C3AR1, C7, CD4,
of immune	CD8A, CD74, CLU, CTSS, FCER1G, FCGR1A, FYB1,
response	NCKAP1L, INPP5D, LCK, LCP2, CFP, PTPRC, CCL5,
	SLC11A1, TLR2, KLRK1, RGCC, TLR7, SLC15A3, TLR8,
	SASH3, MYO1G, CLEC7A, KLHL6, CMTM3, THEMIS
inflammatory	ADORA2A, AIF1, C1QA, C3, C3AR1, CD6, CD68, CLU,
response	CCR5, CNR2, CSF1R, CX3CR1, CYBB, DPEP1, FCGR1A,
1	FCGR3A, FOLR2, FOS, HMOX1, ITGAL, CD180, PTN,
	CCL5, SLC11A1, TLR2, TNFRSF1B, VCAM1, LY86,
	CXCL13. STAB1. LAT. TLR7. TLR8. CLEC7A. PLD4.
	IL31RA
immune effector	C10A, C10B, C10C, C1R, C1S, C3, C7, CD2, CD8A
process	CD74 CLU CX3CR1 FCFR1G FCGR1A FCGR3A
process	II 2RB INPP5D ITGAL I CP1 I FNG CD180 CFP PRF1
	SUC11A1 SPN KURK1 LAT RGCC TURS APRR11P
	MV01G
regulation of call	$\frac{1}{1000}$
	ECGD2A NCKAD11 HMOV1 INDD5D I CK DI EK
activation	TORSA, NORAFIL, HNIOAI, INFFJD, LOR, FLER, DTDDC, DAC2, COL5, SDN, TNEDSEID, VCAM1, 7DTD14
	PIPRC, RAC2, CCL3, SPN, INFRSFIB, VCAMI, ZBIBIO,
	LAPIMO, ISPAN 32 , CD300A, IKZF 3 , KLKKI, LAI,
•.• • • .•	SASH3, CLEC/A, CYGB, IL31RA, PIK3R6
positive regulation	AIF1, C3, CD4, CD6, CD74, CLU, CSF1R, CX3CR1,
of phosphorylation	FCGRIA, FLI3, HCLS1, NCKAPIL, LCP2, LEPR, PLAUR,
	PTPRC, CCL5, SLC11A1, TNFRSF11A, LAT, RGCC,
	AGAP2, IL31RA, PIK3R6, FGD2, TMEM119, NCF1
positive regulation	AIF1, C3, C3AR1, CD2, CD4, CD6, CD74, CLU, CSF1R,
of cytokine	CYBB, FCER1G, FCGR3A, HMOX1, PTPRC, SLC11A1,
production	SPN, TLR2, LAPTM5, KLRK1, RGCC, TLR7, TLR8,
	SASH3, CLEC7A
cell-cell adhesion	CD2, CD6, CDH11, CX3CR1, ITGA4, ITGAD, ITGAL,
	ITGAX, PLEK, PTPRC, RAC2, CCL5, SELPLG, SPN,
	VCAM1, NRXN1, PTPRU, TSPAN32, PCDH12, CADM3,
	FERMT3, HMCN1, LRG1, CRB2
regulation of	BST2, C3, CD74, CX3CR1, FCGR1A, NCKAP1L, HMOX1.
immune effector	CFP. PTPRC. RAC2. TNFRSF1B. LAPTM5 CD300A
process	KLRK1 TLR7 SASH3 CLEC7A SVEP1 PIK3R6 NCE1
extracellular matrix	CO[1A1] CO[1A2] CO[3A1] CO[12A1] CTSS DPT
organization	$I \cap I \cap$
organization	$\begin{array}{c} \text{LOTI, LOALI, LOAL2, WIWE2, ADAWISL2, FDLN3,} \\ \text{OLEMI 2D EVDD10 SMOC2 ADAMTS12 UMCN1} \end{array}$
agification	CDU11 COULA 1 COULA 2 COU 6A 1 VCAN EU 2 TNC
ossincation	CDITTI, COLTAT, COLTAZ, COLOAT, VCAN, FHL2, INC, ICEDD2 MMD2 DTN SNALL OF EC2D ZDTD16
	IUFDF3, WIVIF2, F1N, SNAII, ULEU3B, ZB1B10,
	INFKSFIIA, MKC2, ADAWISI2, IMEMII9

	AK and SAK
Gene entry	Gene name
	AIF1, C1R, C1S, CDH11, VCAN, ADGRE1, LCP1,
coloine ion hinding	LOXL2, PRF1, CLEC3B, TRPM2, NRXN1, FBLN5,
calcium ion binding	STAB1, PCDH12, HPCAL4, DNAH7, FKBP10,
	SMOC2, SVEP1, HMCN1, CRB2
extracellular matrix	AEBP1, CD4, COL1A1, COL1A2, COL3A1,
structural constituent	COL6A1, COL6A2, COL12A1, VCAN, DCN, DPT,
	TNC, LAMA2, FBLN5, HMCN1
integrin binding	COL3A1, ITGA4, ITGAD, ITGAL, ITGAX, LCP1,
	PTN, VCAM1, ITGBL1, FBLN5, FERMT3
protein homodimerization	AOX1, BST2, CD4, CSF1R, FCER1G, Hmox1,
activity	PLEK, CCL5, SLC11A1, ZBTB16, FBLN5, ICZF3,
	CADM3, GIMAP7, FIBIN
carbohydrate binding	CD69, VCAN, LOXL2, PTN, CLEC3B, MRC2,
	CLEC10A, KLRK1, CLEC7A, CLEC2L, CLEC12A,
	FUOM
G protein-coupled receptor	ADORA2A, C3, CX3CR1, CCL5, WNT2B, PTCH2,
binding	CXCL14, CXCL13, CNRIP1, RTP4
glycosaminoglycan	VCAN, DCN, PTN, PTPRC, TLR2, CLEC3B,
binding	CXCL13, STAB1, SMOC2
metallopeptidase activity	AEBP1, DPEP1, MMP2, ADAM12, CPXM1,
	ADAMTS12, HTRA3
fibronectin binding	CTSS, IGFBP3, ITGA4, MMP2
pattern recognition	TIR2 TIR2 TIR8 CIEC7A
receptor activity	
immunoglobulin receptor	TLR2 TLR7 TLR8 CLEC7A
activity	
oxidoreductase activity,	
acting on the CH-NH3	LOXL1, LOXL2, VCAM1
group of donors, oxygen	
as acceptor	

Table S3. Gene entries and gene names shared by molecular functions in GO enrichment analysis of AR and SAR

Table S4. Common gene entries and gene names of cell composition in GO enrichment analysis of AR and SAR

	AK alid SAK
Gene entry	Gene name
extracellular	AEBP1, C1QA, C1QB, C1QC, CLU, COL1A1, COL1A2,
matrix	COL3A1, COL6A1, COL6A2, COL12A1, VCAN, CTSS,
	DCN, DPT, TNC, LAMA2, LOXL1, LOXL2, CD180, MMP2,
	CFP, CLEC3B, WNT2B, ADAMTSL2, LAMC3, FBLN5,
	OLFML2B, SMOC2, ADAMTS12, HMCN1
secretory granule	BST2, C3AR1, CD53, CD68, CYBB, FCER1G, NCKAP1L,
membrane	ITGAL, ITGAX, IRAG2, PLAUR, PTPRC, SLC11A1, TLR2,
	TNFRSF1B, TRPM2, LILRB3, CD300A, CLEC12A
lytic vacuole	BST2, C3, C3AR1, CD68, CD74, CFTR, COL6A1, VCAN,

	CTSS, DCN, IRAG2, PRF1, SLC11A1, TRPM2, LAPTM5,
	TLR7, SLC15A3, TLR8, NCF1
cell-cell junction	CD2, CD53, CDH11, LCP2, PTPRU, LAT, PCDH12,
	MXRA8, CADM3, HMCN1, PARD6G, CRB2, THEMIS
membrane raft	BST2, CD2, CD4, CD8A, HMOX1, INPP5D, LCK, LCP2,
	PTPRC, SELPLG, TLR2, TNFRSF1B, LAT, BAALC, PLVAP
endocytic vesicle	CD4, CD74, CFTR, CTSS, CYBB, FCGR1A, GRIA3, HCLS1,
	RAC2, SLC11A1, TLR2, STAB1, TLR7, PLD4, NCF1
cell-substrate	FHL2, TNC, ITGA4, LCP1, PLAUR, PTPRC, RAC2, RPLP2,
junction	ITGBL1, MRC2, CORO2B, APBB1IP, PARVG, FERMT3,
	HMCN1
protein complex	TNC. ITGA4. ITGAD. ITGAL. ITGAX. LAMA2. PLAUR.
involved in cell	ITGBL1, TSPAN32
adhesion	
collagen trimer	CIQA, CIQB, CIQC, COLIAI, COLIA2, COL3AI,
1 4	COL6A1, COL6A2, COL12A1
basement	TNC, LAMA2, LOXL1, LOXL2, SMOC2, HMCN1
immunalagiaal	
minunological	CD6, CD37, CD53, LCK, LAT
synapse phagocytic cup	AIEL LODI ADHGAD25 MVOLG
complement	AIT, LETT, AKTIOAI 25, WI OTO
component C1	CIOA CIOB CIOC
complex	
vompion	

	AR	SAR
Biological processes	response to bacterium, positive regulation of response to external stimulus, regulation of defense response, cell population proliferation, leukocyte migration, regulation of leukocyte migration, cell- matrix adhesion, leukocyte cell-cell adhesion, cell junction disassembly	cellular response to cytokine stimulus, positive regulation of cell migration, chemotaxis, vasculature development, negative regulation of immune system process, positive regulation of cell death, regulation of angiogenesis, myeloid leukocyte activation, integrin-mediated signaling pathway
Molecular functions Cell composition	enzyme activator activity, cytokine binding, actin binding, MHC protein binding, collagen binding, SMAD binding, proteoglycan binding, molecular sequestering activity side of membrane, neuronal cell body, actin cytoskeleton,	kinase binding, immune receptor activity, growth factor binding, actin filament binding, SH3 domain binding, coreceptor activity, heme binding, phosphatidylinositol 3- kinase binding external side of plasma membrane, apical part of cell,
composition	phagocytic vesicle,	secretory granule lumen, blood

Table S5. Different regulated gene items in AR and SAR in GO enrichment analysis

cytoplasmic side of plasma	microparticle, microvillus,
membrane, uropod,	platelet dense granule lumen,
endolysosome	phosphatidylinositol 3-kinase
	complex, class IB

Table S6. Enrichment and analysis of pathways and genes of the same regulated signal in AR and

Pathway	Gene name
Cell adhesion	CD2, CD4, CD6, CD8A, VCAN, ITGA4, ITGAL, PTPRC,
molecules	SELPLG, SPN, VCAM1, NRXN1, CADM3
PI3K-Akt signaling	COL1A1, COL1A2, COL6A1, COL6A2, CSF1R, FLT3,
pathway	TNC, IL2RB, LAMA2, TLR2, LAMC3, PIK3R6
Osteoclast	CSF1R, FCGR1A, FCGR3A, FHL2, FOS, LCK, LCP2,
differentiation	TNFRSF11A, LILRB3, NCF1
Platelet activation	CSF1R, FCGR1A, FCGR3A, FHL2, FOS, LCK, LCP2,
	TNFRSF11A, LILRB3, NCF1
Hematopoietic cell lineage	CD2, CD4, CD8A, CD37, CSF1R, FCGR1A, FLT3, ITGA4
Natural killer cell	
mediated	CD2, CD4, CD8A, CD37, CSF1R, FCGR1A, FLT3, ITGA4
cytotoxicity	
Yersinia infection	CD4, CD8A, FOS, FYB1, ITGA4, LCK, LCP2, RAC2, LAT
Malaria	GYPC, ITGAL, TLR2, VCAM1, KLRK1
Leukocyte	
transendothelial migration	CYBB, ITGA4, ITGAL, MMP2, RAC2, VCAM1, NCF1
Pathways in cancer	CSF1R, FLT3, FOS, HMOX1, IL2RB, LAMA2, MMP2,
	RAC2, RXRG, WNT2B, ZBTB16, PTCH2, LAMC3
Regulation of actin	CSF1R, FLT3, FOS, HMOX1, IL2RB, LAMA2, MMP2,
cytoskeleton	RAC2, RXRG, WNT2B, ZBTB16, PTCH2, LAMC3

Figure S7. Wayne diagram of regulated genes involved in PI3K-Akt signaling pathway between AR and SAR

Figure S8. Wayne diagram of KEGG enrichment analysis pathway between AR and SAR

Figure S9. KEGG analysis of common pathway genes Wayne diagram of AR and SAR (Top 20)

Figure S10. Wayne diagram of up-regulated genes in AR and SAR